YEAR 6 PROMPT sheet

6/1 Place value in numbers to 10million

The position of the digit gives its size

1	Ten millions
2	Millions
3	Hundred thousands
4	Ten thousands
15	thousands
6	hundreds
7	tens
80	units

<u>Example</u>

The value of the digit '1' is 10 000 000
The value of the digit '2' is 2 000 000
The value of the digit '3' is 300 000
The value of the digit '4' is 40 000

6/1 Round whole numbers

Example 1- Round 34 2 679 to the nearest 10 000

- Step 1 Find the 'round-off digit' 4
- Step 2 Move one digit to the right 2

4 or less? YES - leave 'round off digit' unchanged - Replace following digits with zeros

ANSWER - 340 000

Example 2- Round 34 5 679 to the nearest 10 000

- o Step 1 Find the 'round-off digit' 4
- Step 2 Move one digit to the right 5

5 or more? YES - add one to 'round off digit'- Replace following digits with zeros

<u>ANSWER - 350 000</u>

6/2 Negative numbers

The difference between 2 and -2 = 4 (see line)

Remember the rules:

- When subtracting go down the number line
- · When adding go up the number line
- 8 + 2 is the same as 8 2 = 6
- 8 + 2 is the same as 8 2 = 6
- 8 2 is the same as 8 + 2 = 10

6/3 Multiply numbers & estimate to check

6/3 Use estimates to check calculations

6/3 Divide numbers & estimate to check

With a remainder also expressed as a fraction

e.g.
$$4928 \div 32$$

$$028$$

$$15 432$$

$$-30$$

$$132$$

$$-120$$

$$12$$
ANSWER - $432 \div 15 = 28 \text{ r } 12$

6/3 continued

With a remainder expressed as a decimal

ANSWER - $432 \div 15 = 28$. 8

6/3 Use estimates to check calculations

≈ 30

6/4 Factors, multiples & primes

- **FACTORS** are what divides exactly into a number
- e.g. Factors of 12 are: Factors of 18 are:

1	12
2	6
3	4

1	18
2	9
3	6

The common factors of 12 & 18 are: 1, 2, 3,

- 6, The Highest Common Factor is: 6
 - PRIME NUMBERS have only TWO factors

e.g. Factors of 7 are: 1 7

Factors of 13 are 13

So 7 and 13 are both prime numbers

• MULTIPLES are the times table answers

e.g. Multiples of 5 are:

Multiples of 4 are:

5 10 15 **20** 25

4 8 12 16 20

The Lowest Common Multiple of 5 and 4 is: 20

6/5 Order of operations

Bracket

Indices

Divide

Multiply

Do these in the order they appear

Add

Do these in the order they appear Subtract

e.g.
$$3 + \frac{4 \times 6}{1 \times 3} - 5 = 22$$

first $\frac{(2 + 1) \times 3}{1 \times 3} = 9$

first

6/6 Addition

· Line up the digits in the correct columns

6/6 Subtraction

· Line up the digits in the correct columns

6/7 Equivalent fractions

 $\begin{array}{c}
\bullet \quad \underline{\text{To simplify a fraction}} \\
\text{Example:} \quad \underline{27} \\
36
\end{array}$

First find the highest common factor of the numerator and denominator – which is 9, then divide

$$\frac{27}{36 \div 9} = \frac{3}{4}$$

To change fractions to the same denominator

Example:
$$\frac{3}{4}$$
 and $\frac{2}{3}$

Find the highest common multiple of the denominators - which is 12, then multiply:

$$\frac{3^{x3}}{4^{x3}} = \frac{9}{12}$$
 and $\frac{2^{x4}}{3^{x4}} = \frac{8}{12}$

6/8 Add & subtract fractions

Make the denominators the same

6/9 Multiply fractions

<u>5</u>

- Write 5 as 1
- Multiply numerators & denominators

e.g. $5 \times \frac{2}{3}$	e.g. $\frac{4}{5} \times \frac{2}{3}$
$= \frac{5}{1} \times \frac{2}{3}$	$=\frac{8}{15}$
$= \frac{10}{3} = 3 \frac{1}{3}$	

6/9 Divide fractions

- \circ Write 5 as $1^{\frac{5}{2}}$
- o Invert the fraction after ÷ sign
- Multiply numerators & denominators

e.g. $\frac{2}{3} \div 5$	e.g. $\frac{4}{5} \div \frac{2}{3}$
$=\frac{3}{2} \times \frac{1}{5}$	= $\frac{4}{5} \times \frac{3}{2}$ = $\frac{12}{5} = 1 - \frac{2}{5} = 1 + \frac{1}{5}$
- 10	10 10 5

6	/10 <u>Multiply/divide decimals by 10, 100</u>									<u>)</u>
		thousands	hundreds	tens	units	•	tenths	hundredths	thousandths	
		4	3	5	2	•	6	1	7	

To multiply by 10, move each digit one place to the left
 e.g. 35.6 x 10 = 356

Hundreds	Tens	Units	•	tenths
	_ 3	_ 5	•	- 6
3*	5	6	•	

 To <u>divide</u> by 10, move each digit one place to the <u>right</u>

e.g.
$$35.6 \div 10 = 356 = 3.56$$

Tens	Units	•	tenths	hundredths
3 <	5	•	6_	
	3	•	5	6

- To <u>multiply</u> by 100, move each digit 2 places to the <u>left</u>
- To <u>divide</u> by 100, move each digit 2 places to the <u>right</u>

AN ALTERNATE METHOD

Instead of moving the <u>digits</u> Move the <u>decimal point the opposite way</u>

6/11 Multiply decimals

Step 1 - remove the decimal point Step 2 - multiply the two numbers Step 3 - Put the decimal back in

Example: 0.06 x 8 => 6 x 8 => 48 => 0.48

6/11 Divide decimals

Use the bus shelter method Keep the decimal point in the same place Add zeros for remainders

Example: 6.28 ÷ 5

1.256

5)6.122830

6/12 <u>Fraction, decimal,</u> <u>percentage</u> <u>equivalents</u>

LEARN THESE:

$$\frac{1}{4}$$
 = 0.25 = 25%

$$\frac{1}{2}$$
 = 0.5 = 50%

$$\frac{3}{4}$$
 = 0.75 = 75%

· Percentage to decimal to fraction

$$7\% = 0.07 = 100^{7}$$

$$70\% = 0.7 = 100^{70} = 10^{7}$$

· Decimal to percentage to fraction

$$0.3 = 30\% = \frac{3}{10}$$

$$0.03 = 3\% = 100^3$$

0.39 = 39% =
$$\overline{100}^{39}$$

· Fraction to decimal to percentage

$$\frac{4}{5} = \frac{80}{100} = 80\% = 0.8$$

Change to 100

0.
$$3758^{\frac{3}{2}} = 3 \div 8 = 8$$
)

$$3.^{3}0^{6}0^{4}0 = 0.375 = 37.5\%$$

$$12^9 = \frac{3}{4} = 0.75 = 75\%$$

Cancel by 3

6/13 Fraction of quantity

•
$$\frac{4}{5}$$
 means ÷ 5×4

6/13 Percentage of quantity

Use only

Example: To find 35% of £400

£80

5% = £20

35% = £140

6/14 Similar shapes

When a shape is enlarged by a scale factor the two shapes are called SIMILAR shapes

6/14 Unequal sharing

Example- unequal sharing of sweets

A gets
3 shares
4 shares
3 sweets
4 sweets
12 sweets
4 sweets
16 sweets
4

6/15 Express missing numbers algebraically

An unknown number is given a letter

Examples

6/15 Use a word formula

Example: -Time to cook a turkey
Cook for 45min per kg weight
Then a further 45min

For a 6kg turkey, follow the formula:

 $45\min \times 6 + 45\min$

=270min +

45min = 315min

= 5h 15min

6/16 Number sequences

Understand position and term

		Poormon		**
Position	1 5	2	3	4
Term	3 🗸	7	11	15

Term to term rule = +4

Position to term rule is x - 4 - 1

(because position $1 \times 4 - 1 = 3$)

 $nth term = n \times 4 - 1 = 4n - 1$

• Generate terms of a sequence

If the nth term is $5n + 11^{st}$ term $(n=1) = 5x1 + 1 = 62^{nd}$ term $(n=2) = 5x2 + 1 = 113^{rd}$ term (n=3) = 5x3 + 1 = 16

6/17 <u>Possible solutions of a</u> number sentence

Example: x and y are numbers Rule: x + y = 5

Possible solutions: x = 0 and y = 5

x = 1 and y = 4

x = 2 and y = 3

x = 3 and y = 2

x = 4 and y = 1

x = 5 and y = 0

6/18 <u>Convert units of measure</u> <u>METRIC</u>

When converting measurements follow these rules:

- When converting from a larger unit to a smaller unit we multiply (x)
- When converting from a smaller unit to a larger unit we divide (÷)

UNITS of LENGTH

10mm = 1cm

100cm = 1m

1000m = 1km

UNITS of MASS

1000g = 1kg

1000kg = 1tonne

UNITS of TIME

60sec = 1 min

60min = 1 hour

24h = 1 day

365days = 1 year

UNITS of VOLUME

1000ml = 1 litre

100cl = 1litre

6/19 <u>Convert units of measure</u> <u>METRIC/IMPERIAL</u>

LEARN: 5 miles = 8km

6/20 Perimeter and area of shapes

Shapes can have the SAME area but different perimeters

The area of each shape is 9 squares

Perimeter of each shape is different A - 12; B - 14; C -16

6/21 Area of parallelogram & triangle

 \circ Area of triangle ($\frac{1}{2}$ a parallelogram)

Area of triangle =
$$\frac{b \times h}{2}$$

= $\frac{8 \times 5}{2}$
 $\frac{20cm^2}{}$

6/22 Volume

o Volume of cuboid

Volume = $1 \times w \times h$ $=5\times3\times2$ $= 30 cm^3$

o Volume of cube

Volume = $1 \times w \times h$ $= 3 \times 3 \times 3$ $= 27m^3$

6/23 Construct 2D shapes

Example: Triangle with side and angles given

- Draw line AB = 7cm
- Draw angle 34⁰ at point A from line AB Draw angle 47⁰ at point B from line AB
- Extend to intersect the lines at C

6/23 Construct 3D shapes

CUBE & its net

CUBOID & its net

TRIANGULAR PRISM & its net

6/24 Properties of shapes

TRIANGLES - sum of angles = 180°

ISOSCELES triangle 2 equal sides & 2 equal angles

EQUILATERAL triangle 3 equal sides & ALL angles 60⁰

QUADRILATERALS - sum of angles = 360°

REGULAR POLGONS - all sides the same

- o Polygons have straight sides
- o Polygons are named by the number sides
 - 3 sides triangle
 - 4 sides quadrilateral
 - 5 sides pentagon
 - 6 sides hexagon
 - 7 sides heptagon
 - 8 sides octagon
 - 9 sides nonagon
 - 10 sides decagon

Sum of exterior angles is always 360⁰

- $_{\odot}$ interior & exterior angle add up to 180 0
- o the interior angles add up to:

Triangle =1 x 180^{0} = 180^{0} Quadrilateral =2 x 180^{0} = 360^{0} Pentagon =3 x 180^{0} = 540^{0} Hexagon =4 x 180^{0} = 720^{0} etc

6/25 Parts of a circle

- The circumference is the distance all the way around a circle.
- The diameter is the distance right across the middle of the circle, passing through the centre.
- The radius is the distance halfway across the circle.
- The radius is always half the length of the diameter. $(d = 2 \times r)$ or $(r = \frac{1}{2} \times d)$

6/26 Angles and straight lines

 $^{\circ}$ Angles on a straight line add up to 180 0

$$148^{0} + 32^{0} = 180^{0}$$

o Angles about a point add up to 3600

$$146^{0} + 90^{0} + 124^{0} = 360^{0}$$

o Vertically opposite angles are equal

6/27 Position on a co-ordinate grid

6/28 Transformations

o Translation - A shape moved along a line

Example - Move shape A 3 right & 4 down
Can also be written as a vector 3/

Notice:

- o The new shape stays the same way up
- o The new shape is the same size
- Reflect a shape in x-axis

o Reflect a shape in y-axis

6/29 **Graphs**

Pie chart

Transport	Frequency	Angle
Car	13	13 × 9=117 ⁰
Bus	4	4 × 9=36 ⁰
Walk	15	15 × 9=135
Cycle	8	8 × 9=72

Total frequency = 40 $360^{\circ} \div 40 = 9^{\circ}$ per person

o Line graph

Line graphs show changes in a single variable - in this graph changes in temperature can be observed.

6/30 The mean

The mean is usually known as the average. The mean is not a value from the original list. It is a typical value of a set of data

Mean = total of measures ÷ no. of measures

e.g.- Find mean speed of 6 cars travelling on a

road Car 1 - 66mph

Car 2 - 57mph

Car 3 - 71mph

Car 4 - 54mph

Car 5 - 69mph

Car 6 - 58mph

Mean = <u>66+57+71+54+69+58</u>

6

= <u>375</u>

= 62.5mph

Mean average speed was 62.5mph